Í ÁŸÒŒÜÙÁY ŒÜÜŒÞVŸ

Product Specification Copper SFP Transceiver COPPER-SFP (1000Mbps)

Product Features

Up to 1.25Gb/s bi-directional data links

Hot-pluggable SFP footprint

Extended case temperature range (0° C to $+85^{\circ}$ C)

Fully metallic enclosure for low EMI

Low power dissipation (1.05 W typical)

Compact RJ-45 connector assembly

Access to physical layer IC via 2-wire serial bus

1000 BASE-T operation in host systems with SERDES interface

10/100/1000Mbps compliant in host systems with SGMII interface

Applications

1Gigabit Ethernet over Cat 5 cable

Standards:

Compatible with IEEE 802.3z

Compatible with FDA 21 CFR 1040.10 and 1040.11, Class I

Product selection

		·
Part Nun	ıber	Product Description
ÙØÚËFÕĖ		10/100/1000Mbps, SGMII interface, Copper SFP with spring latch
ÙØÚËFÕË	Ż/	1000Mbps only, SERDES interface, Copper SFP with spring latch

Description:

COPPER-SFP (10/100/1000Mbps) Copper Small Form Pluggable (SFP)transceivers is high performance, cost effective module compliant with the Gigabit Ethernet and 1000- BASE-T standards as specified in IEEE 802. 3-2002 and IEEE 802.3ab, which supp- orting 1000Mbps datarate up to 100 meters reach over unshielded twisted-pair category 5 cable. The module supports1000 Mbps full duplex data-links with 5-level Pulse Amplitude Modulation (PAM) signals. All four pairs in the cable are used with symbol rate at 250Mbps on each pair. The module provides standard serial ID information compliant with SFP MSA, which can be accessed with address of A0h via the 2wire serial CMOS EEPROM protocol. The physical IC can also be accessed via 2wire serial bus at address ACh.

I. SFP to Host Connector Pin Out

Pin	Symbol	Name/Description	Note	ı
-----	--------	------------------	------	---

1	VEET	Transmitter ground (common with receiver ground)	1
2	TFAULT	Transmitter Fault. Not supported	
3	TDIS	Transmitter Disable. PHY disabled on high or open	2
4	MOD_DEF(2)	Module Definition 2. Data line for serial ID	3
5	MOD_DEF(1)	Module Definition 1. Clock line for serial ID	3
6	MOD_DEF(0)	Module Definition 0. Grounded within the module	3
7	Rate Select	No connection required	
8	LOS	Loss of Signal indication.	4
9	VEER	Receiver ground (common with transmitter ground)	1
10	VEER	Receiver ground (common with transmitter ground)	1
11	VEER	Receiver ground (common with transmitter ground)	1
12	RD-	Receiver Inverted DATA out. AC coupled	
13	RD+	Receiver Non-inverted DATA out. AC coupled	
14	VEER	Receiver ground (common with transmitter ground)	1
15	VCCR	Receiver power supply	
16	VCCT	Transmitter power supply	
17	VEET	Transmitter ground (common with receiver ground)	1
18	TD+	Transmitter Non-Inverted DATA in. AC coupled	
19	TD-	Transmitter Inverted DATA in. AC coupled	
20	VEET	Transmitter ground (common with receiver ground)	1

Notes: 1. Circuit ground is connected to chassis ground

- 2. PHY disabled on TDIS > 2.0V or open, enabled on TDIS < 0.8V
- 3. Should be pulled up with 4.7k-10k Ohms on host board to a voltage between 2.0 V and $3.6 \text{ V.MOD_DEF}(0)$ pulls line low to indicate module is plugged in.
- 4. LVTTL compatible with a maximum voltage of 2.5V. Not supported on **COPPER-SFP**.

Table 1. SFP to host connector pin assignments and descriptions

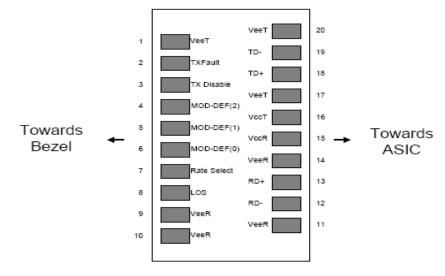


Figure 1. Diagram of host board connector block pin numbers and names

II. +3.3V Volt Electrical Power Interface

The ${\bf COPPER\text{-}SFP}$ has an input voltage range of 3.3 V +/- 5%. The 4 V maximum voltage is not allowed for continuous operation.

+3.3 Volt Electrical Power Interface										
Parameter	Symbol	Min	Тур	Max	Units	Notes/Conditions				
Supply Current	Is		320	375	mA	1.2W max power over full range of voltage and temperature. See caution note below				
Input Voltage	Vcc	3.13	3.3	3.47	V	Referenced to GND				
Maximum Voltage	Vmax			4	V					
Surge Current	Isurge			30	mA	Hot plug above steady state current. See caution note below				

Caution: Power consumption and surge current are higher than the specified values in the SFP MSA **Table 2.** +3.3 Volt electrical power interface

III. Low-Speed Signals

MOD_DEF(1) (SCL) and MOD_DEF(2) (SDA), are open drain CMOS signals (see section VII, "Serial Communication Protocol"). Both MOD_DEF(1) and MOD_DEF(2) must be pulled up to host_Vcc.

Low-Speed Signals, Electronic Characteristics											
Parameter	Symbol	Min	Max	Units	Notes/Conditions						
SFP Output LOW	VOL	0	0.5	V	4.7k to 10k pull-up to host_Vcc, measured at host side of connector						
SFP Output HIGH	VOH	host_Vcc - 0.5	host_Vcc + 0.3	V	4.7k to 10k pull-up to host_Vcc, measured at host side of connector						
SFP Input LOW	VIL	0	0.8	V	4.7k to 10k pull-up to Vcc, measured at SFP side of connector						
SFP Input HIGH	VIH	2	Vcc + 0.3	V	4.7k to 10k pull-up to Vcc, measured at SFP side of connector						

Table 3. Low-speed signals, electronic characteristics

IV. High-Speed Electrical Interface

All high-speed signals are AC-coupled internally.

High-Speed Electrical Interface,

Transmission Line-SFP

Parameter	Symbol	Min	Тур	Max	Units	Notes/Conditions
Line Frequency	fL		125		MHz	5-level encoding, per IEEE 802.3
Tx Output Impedance	Zout,TX		100		Ohm	Differential, for all Frequencies between 1MHz and 125MHz
Rx Input Impedance	Zin,RX		100		Ohm	Differential, for all Frequencies between 1MHz and 125MHz

Table 4. High-speed electrical interface, transmission line-SFP

High-Speed Electrical Interface,											
Host-SFP											
Parameter	Symbol	Min	Тур	Max	Units	Notes/Conditions					
Single ended data input swing	Vinsing	250		1200	mV	Single ended					
Single ended data output swing	Voutsing	350		800	mV	Single ended					
Rise/Fall Time	Tr,Tf		175		psec	20%-80%					
Tx Input Impedance	Zin		50		Ohm	Single ended					
Rx Output Impedance	Zout		50		Ohm	Single ended					

Table 5. High-speed electrical interface, host-SFP

V. General Specifications

General						
Parameter	Symbol	Min	Тур	Max	Units	Notes/Conditions
Data Rate	BR	10		1,000	Mb/sec	IEEE 802.3 compatible.
						See Notes 2 through 4
						below
Cable Length	L			100	m	Category 5 UTP. BER
					m	<10-12

Table 6. General specifications

Notes:

- 1. Clock tolerance is +/- 50 ppm
- 2. By default, the **COPPER-SFP** is a full duplex device in preferred master mode
- 3. Automatic crossover detection is enabled. External crossover cable is not required
- 4. 1000 BASE-T operation requires the host system to have an SGMII interface with no clocks, and the module PHY to be configured per Application Note AN-2036. With a SERDES that does not support SGMII, the module will operate at 1000BASE-T only.

VI. Environmental Specifications

The **COPPER-SFP** has an extended range from 0° C to $+85^{\circ}$ C case temperature as specified in Table 8.

Environmental Specifications						
Parameter	Symbol	Min	Тур	Max	Units	Notes/Conditions
Operating Temperature	Тор	0		85	°C	Case temperature
Storage Temperature	Tsto	-40		85	°C	Ambient temperature

Table 7. Environmental specifications

VII. Mechanical Specifications

The host-side of the **COPPER-SFP** conforms to the mechanical specifications outlined in the SFP MSA1. The front portion of the SFP (part extending beyond the face plate of the host) is larger to accommodate the RJ-45 connector. See Figure 2 below for details.

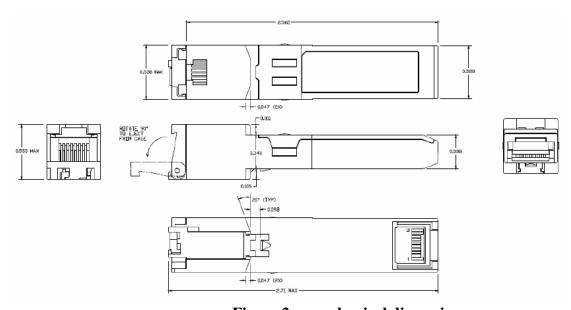


Figure 2. mechanical dimensions

VIII. References

- 1. Small Form Factor Pluggable (SFP) Transceiver Multi-Source Agreement (MSA), 2. IEEE Std 802.3, 2002 Edition. IEEE Standards Department, 2002.
- 3. "AT24C01A/02/04/08/16 2-Wire Serial CMOS E2PROM", Atmel Corporation.